
EIKMESH
A Java library for 2D unstructured triangular meshes

Benedikt Zönnchen

June 18, 2019

Contents

1 Introduction 1
1.1 Domain description . 2

1.1.1 Signed distance functions . 2
1.1.2 Planar straight line graphs . 2

2 Mesh data structure 4
2.1 Streams, monads and lambdas . 4
2.2 Implementation . 4

2.2.1 Pointer- and array-based implementation 5
2.2.2 Properties . 5
2.2.3 Implicit assumptions . 6

2.3 Working with meshes . 6
2.3.1 Building a mesh . 6
2.3.2 Transforming a PSLG into a mesh 7
2.3.3 Accessing mesh elements . 7
2.3.4 Containers . 8
2.3.5 Visualization . 9

3 Preliminary algorithms 10
3.1 The point location problem . 10
3.2 The Delaunay triangulation . 12

3.2.1 Removing points from a DT . 12
3.3 The constrained Delaunay triangulation 13
3.4 The conforming Delaunay triangulation 13

4 Mesh generation 15
4.1 The edge length function . 15
4.2 Rebay’s algorithms . 15

4.2.1 Voronoi-Vertex point insertion method 16
4.2.2 Voronoi-Segment point insertion method 17

4.3 Ruppert’s algorithm . 18

5 EikMesh 20
5.1 Initial triangulation . 20

5.1.1 Bisection according to a space filling curve 20
5.2 The smoothing algorithm . 21

5.2.1 Edge flips . 21
5.2.2 Long boundary edges . 21

2

5.3 Examples . 23
5.3.1 Uniform ring . 23
5.3.2 Disc subtracted by a rectangle . 23
5.3.3 Combining distance functions . 24
5.3.4 Meshing a PSLG . 24
5.3.5 Random Delaunay triangulation 26
5.3.6 Urban environment . 27

3

1 Introduction

Computational modeling and simulation is a critical aspect of modern science and in-
dustrial design, underpinning a diverse range of application - from numerical simula-
tions of physical phenomena, such as fluid dynamics to crowd simulation to computer
graphics and animation. The basis of these simulations is a discrete representation of
the underlying geometry, i. e. spatial domain. Modern mesh generation is concerned
with the development of efficient and automatic algorithms to construct and maintain
high-quality meshes for complex spatial domains.

EIKMESH focuses on unstructured meshes which are highly flexible and therefore, re-
quire less elements, compared to structured meshes. Since unstructured meshes can be
highly irregular, they require more memory per element (vertex, face, edge) because the
connectivity of elements can not be saved implicitly. Regardless of the higher memory
consumption per element, the overall memory is often significantly lower. Addressing
and changing the mesh requires more complicated algorithms but, due to the reduced
number of mesh elements, the overall computation time is often lower.

EIKMESH is a 2D mesh generator for unstructured meshes. Its design goal is to pro-
vide a fast, light and user-friendly meshing tool with parametric input and advanced
visualization capabilities. EIKMESH generates exact Delaunay triangulations (DT), con-
strained Delaunay triangulations (CDT), conforming Delaunay triangulations (CCDT),
Voronoi diagrams, and high-quality unstructured and conforming triangular meshes.
The user can introduce new data types. Mesh elements work like nodes of a data col-
lection, i. e. mesh elements can carry data which can be addressed in O(1) for a given
mesh element. Therefore, a mesh is also an abstract data type like a List.

The goal of this document is to give the user a basic understanding of how to use
EIKMESH. We will also describe implementation details, algorithms and concepts in-
troduced in the field of computational geometry which are not necessarily required for
using the library. Feel free to skip those parts.

1

1.1 Domain description

Mesh generation begins with the domain to be meshed. In 2D this domain Ωin ⊂ R2 is
the Euclidean space. We define the set of points outside the mesh domain to be

Ωout = R2 \ Ωin.

EIKMESH supports two descriptions of the domain which we introduce in the following
sections.

1.1.1 Signed distance functions

One way is to define the domain is by analytical signed distance functions d such that

d(x) ≤ 0 ⇐⇒ x ∈ Ωin. (1.1)

For example,
dcirc(x) = ‖x‖ − 1 (1.2)

defines a circle to be the spatial domain. Especially for curved geometries where ∇d is
unique, geometries defined by a distance function is a powerful technique. For more
information we refer to [14].

Using distance functions can lead to some disadvantages. Especially for domains con-
taining sharp boundaries, it can be difficult to enforce geometrical conformity at posi-
tions x at which ∇d(x) is not unique. One solution is to add additional fix points at
those positions. Another problem might be the computational expensive evaluation
of more complex distance functions. This can be solved by an approximated distance
function which is prior-computed on a background mesh. Using this technique d is
computed at points of the coarse background mesh and is interpolated elsewhere.

1.1.2 Planar straight line graphs

Another well-known domain representation are planar straight line graphs (PSLG)s. A
PSLG consist of vertices and segments. The generated mesh has to contain all segments
and points of the PSLG. We distinguish between segments of the PSLG and edges of the
mesh. A segment can be represented by multiple edges of the generated mesh. The
PSLG is planar i. e. segments only intersect at a shared vertex. Note that we can split
intersecting segments to enforce this criterion.

For mesh generation, a PSLG must be segment-bounded. In 2D this means that there
exist a set of segments in the PSLG which form a simple polygon which contains all
points and therefore all other segments. This special polygon separates the mesh do-
main Ωin from the exterior domain Ωout. Furthermore, the mesh domain can contain
holes which have to be segment-bounded too. PSLGs are especially useful for describ-
ing non-curved domains but they can lead to a high number of small segments if a
curve has to be approximated.

2

Figure 1.1: Illustration of a segment-bounded PSLG containing 15 holes.

Remark: Note that we can transform any simple polygon into a distance function thus
we can transform the PSLG description into a distance function description but we lose
all segments not part of a polygon (the bounding polygon or any hole).

3

2 Mesh data structure

v = vertex(e)

f = face(e)

g e′

edge(g)

edge(v)

e

twin(e)

prev(e)

next(e)

Figure 2.1: Illustration of the doubly connected edge list (DCEL).

2.1 Streams, monads and lambdas

Java 8 introduced some concept known from functional programming to the Java pro-
gramming language. For example the concept of lazy evaluation and monads such as
the Optional monad. Additionally, the Stream library is a powerful extension to write
shorter and more readable code especially for iterating, filtering or reducing a collection
of elements (in parallel). To use a Stream one also has to get used to the new lambda
expressions, like p -> p.x + p.y, which is syntactical sugar for writing anonymous
classes. EIKMESH excessively uses these language features to establish a user-friendly
notation.

2.2 Implementation

The IMesh data structure contains and manages all elements of the actual mesh, that
is edges, faces, vertices and all data which is stored on those geometrical elements.
Therefore, to create, delete, change any element the user has to call methods offered
by IMesh. For example, to create a new vertex we can call mesh.createVertex(x, y).
IMesh is an implementation of the edge based half-edge data structure also called dou-
bly connected edge list (DCEL). A DCEL is able to manage planar straight-line graphs
(PSLG). Note that a triangulation is a special case of a PSLG. Each edge of the mesh is
represented by two counter clockwise (CCW) oriented half-edges (one for each face of
the edge). Figure 2.1 shows how mesh elements (vertices, edges / half-edges and faces)
are connected and how one can access neighbouring elements in constant time.

4

We decided to use the DCEL since it is very flexible and all local operations are rather
fast. For example to compute the degree of a vertex the following code suffice:

1 E e = getEdge(v);
2 E n = edge;
3 int degree = 0;
4

5 do {
6 n = getTwin(getNext(n))
7 degree++;
8 } while(n != e)

Creating a mesh by hand requires a lot of code since all relations, e. g. a half-edge and
its next, have to be set. However, this is not necessary to use our algorithms like the
computation of the Delaunay triangulation or EikMesh or some other mesh generation
method contained in EIKMESH.

2.2.1 Pointer- and array-based implementation

We implemented two versions of the DCEL. For the pointer-based implementation each
relation between two objects in IMesh such as a IHalfEdge and the IVertex in which the
IHalfEdge ends, is realized via Java references i. e. the object of type IHalfEdge possesses
a reference pointing to the object of type IVertex representing its end point. Classes in
this category start with a P e. g. PMesh, PHalfEdge, PFace, PVertex. This version is easier
to debug and follows strongly the object-oriented paradigm. For examples in this doc-
ument, we use these classes, but they can be exchange effortlessly.

The array-based version replaces pointers by indices. Elements of the same type are
contained in an array and can be identified by their index i. e. their position in the
array. Classes in this category start with an A e. g. AMesh, AHalfEdge, AFace, AVertex.
The advantage of this approach is that those arrays can be sorted with respect to some
spatial criterion. Consequently, elements geometrically close can be sorted in such a
way that they are close in memory which can improve the performance of algorithms
iterating over geometrically local elements.

2.2.2 Properties

Each mesh element (vertex, half-edge, face) can have different user-defined properties.
Each property has to have a unique String name. Properties are managed by the mesh,
i.e. defining, inserting and accessing properties can be done via the mesh object by the
following methods:

• setData(V vertex, String name, CV value), where CV is a generic type

• setData(E edge, String name, CE value), where CE is a generic type

• setData(F edge, String name, CF value), where CF is a generic type

• CV getData(V vertex, String name, Class), where CV is a generic type

5

• CE getData(E edge, String name, Class), where CE is a generic type

• CF getData(F face, String name, Class), where CF is a generic type

Remark: The user is responsible for the correctness of the types that is inserting the
objects / primitives of the same type for one key / name and using the correct Class¡¿.
The following code, for example, would cause an Exception:

1 mesh.setData(vertex, "velocity", 3.0);
2 mesh.getData(vertex, "velocity", Boolean.class);

In Java there is nothing like typedef thus the programmer has always to fully specify
the data type which might lead to long lines of code like:

1 IMesh<PVertex, PHalfEdge, PFace> mesh = ...

However, we wanted to make it possible that the user can integrate his own XMesh

implementation and at the same time, it should be easy to use the meshing library.
Therefore, we introduce some classes which predefine some types like PMesh. We also
encourage the user to use the local-variable type inference introduced in Java 10 by
replacing long type definitions by the var keyword if possible. The code above and
below are semantically the same.

1 PMesh mesh = ...

2.2.3 Implicit assumptions

Many operations make assumptions about the mesh it is operating on. For example the
operation splitting a triangle into 3 triangles assumes that the split point lies inside the
triangle and that the triangle is in fact a valid triangle. We insert assertions to test many
of those assumptions but these assertions should only be active for testing because the
performance overhead can be huge. The assumptions are listed in the source code
documentation (JavaDoc). One very important one is that the mesh is always counter-
clockwise (CCW) oriented.

2.3 Working with meshes

2.3.1 Building a mesh

The following code example creates a mesh consisting of one square defined by the
point set

{(0, 0), (1, 0), (1, 1), (0, 1)}

saving Double values on its half-edges and faces. Note that the order of points matter,
i. e. they have to form a simple counter-clockwise (CCW) oriented polygon. Some op-
erations offered by IMesh require the construction of new points P, therefore it requires a
IPointConstructor, here defined by the lambda expression (x,y) -> new VPoint(x,y):

6

1 var mesh = new PMesh();
2 mesh.toFace(new VPoint(0,0),new VPoint(1,0),
3 new VPoint(1,1),new VPoint(0,1));

To use the array-based implementation instead, we only have to exchange PMesh by
AMesh:

1 var mesh = new AMesh();
2 mesh.toFace(new VPoint(0,0),new VPoint(1,0),
3 new VPoint(1,1),new VPoint(0,1));

Result

2.3.2 Transforming a PSLG into a mesh

EIKMESH is able to transform a feasible segment-bounded PSLG file1 into a IMesh or
internal geometry object like VPolygon and VLine. The following code reads the A.poly

file from an InputStream:

1 InputStream inputStream = ...
2 PSLG pslg = PolyGenerator.toVShapes(inputStream);

To transform a PSLG file into a IMesh the following code suffice:

1 IMesh<...> mesh = ...
2 InputStream inputStream = ...
3 PolyGenerator.toPMesh(inputStream, mesh);

Here we assume that the mesh is empty. All segments of the PSLG will be inserted.

2.3.3 Accessing mesh elements

Direct access

Given any mesh element (vertex, half-edge or face), to access other adjacent mesh ele-
ments, the IMesh object has to be used. Read the following code from right to left.

1 mesh.getFace(mesh.getTwin(mesh.getEdge(mesh.getFace())));

First we get access to some (arbitrary) face f of the mesh. Via the second call we access
some (arbitrary) edge e of the face f . Then we get the twin half-edge et of this edge. And
finally we access the face ft of the twin half-edge et. Therefore, we access a neighboring
face of f .

1the file format is identical to the format used by TRIANGLE which can be found here

7

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly
https://www.cs.cmu.edu/~quake/triangle.poly.html

Iterators & streams

To simplify certain access pattern such as accessing all edges of a specific face the library
offers different Iterators and Streams to go over

• all half-edges, vertices / points, neighbouring faces of a specific face

• all half-edges ending at a vertex / point

• all faces surrounding a specific vertex / point

• all faces, edges, vertices of a mesh

• . . .

The following code iterates over all points of the mesh which are at the border, i. e. those
points are connected to at least one half-edge which has only one neighboring face:

1 for(VPoint point : mesh.getPointIt(mesh.getBorder())) {
2 ...
3 }

The following gives a parallel stream of the same elements:

1 mesh.streamPoints(mesh.getBorder()).parallel();

Remark: Note that those iterators and streams rely on the connectivity of the mesh
itself. Therefore, changing the connectivity while iterating will cause unpredictable
behaviors and will possibly destroy the validity of the mesh!

2.3.4 Containers

As already mentioned each mesh element (vertex, half-edge, face) can carry some data
of the type defined by the use.

1 for(PFace face : dt.getMesh().getFaces()) {
2 dt.getMesh().setData(face, "area", dt.getMesh().toTriangle(face).getArea());
3 }

We can, for example, compute the area which is triangulated:

1 double areaSum = dt.getMesh()
2 .streamFaces()
3 .mapToDouble(f -> dt.getMesh().getData(f, "area", Double.class)
4 .get())
5 .sum();
6 double averageArea = areaSum / dt.getMesh().getNumberOfFaces();
7 double triangulatedArea = (100 * (areaSum / (width * height)));
8 System.out.println("Triangulated area = " + areaSum);
9 System.out.println("Average triangle area = " + averageArea);

10 System.out.println("Area triangulated = " + triangulatedArea + " %");

8

Result (Output)

1 Triangulated area = 97.10080319694295
2 Average triangle area = 0.04939003214493538
3 Area triangulated = 97.10080319694295 %

We can also exchange VPoint by any point container extending IPoint.

2.3.5 Visualization

During the development of EIKMESH we created some useful utility classes to accel-
erate the development process. Visualizing the mesh helped us to understand and
improve certain algorithms and to write documents like this.

Tikz generator

The first utility enables the user to convert any valid IMesh into a Tikz file to generate
high quality vector graphic figures. The following code generates Tikz code where each
non acute triangle of a Delaunay triangulation is painted in red:

1 TexGraphGenerator.toTikz(
2 dt.getMesh(),
3 f -> dt.getMesh().toTriangle(f).isNonAcute() ? red : Color.WHITE,
4 1.0f)

Live visualization

Furthermore, we can display the same mesh on a Java Swing canvas:

1 var panel = new PMeshPanel(
2 dt.getMesh(),
3 500,
4 500,
5 f -> dt.getMesh().toTriangle(f).isNonAcute() ? red : Color.WHITE);
6 panel.display("Delaunay triangulation");

Result

(a) Tikz generator (b) Live visualization

Figure 2.2: Illustration of mesh visualization.

9

3 Preliminary algorithms

3.1 The point location problem

Given a triangular unstructured 2D mesh and a point p, a very important operation
in computational geometry is to find the face f which contains it. Every following
algorithm uses this basic operation multiple times. A fast implementation is key for fast
unstructured mesh generation. To solve the point location problem different walking
strategies, described in [7], are implemented:

• straight walk (default), see Fig. 3.1

• orthogonal walk

• probabilistic walk

Furthermore we implemented different point localization algorithms and data struc-
tures:

• Jump and Walk (default) [8]

• Delaunay-Tree [10]

• Delaunay-Hierarchy [5]

• plain walk (no additional strategy),

For a random insertion order of n points, using the Delaunay-Tree or the Delaunay-
Hierarchy leads to a time complexity of O(log(n)) for each point location [10, 5] and
using the Jump and Walk strategy requiresO(n1/4) time [8]. However, surprisingly the
Jump and Walk algorithm does not require any additional data structure thus offers the
most flexibility. Additionally, it performs very well in practice, often better than its two
alternatives. Basically a ITriangulation is the combination of a triangular mesh IMesh

and a point location algorithm IPointLocator.

The first call of the following code example uses the fact that our mesh is a triangulation.
The call starts the so called Jump & Walk algorithm which is fast. The second one checks
each face in a brute force manner until it finds the face containing the point, which is
slow:

1 dt.locateFace(5,5);
2 dt.getMesh().locate(5,5);

10

Figure 3.1: Illustration of a straight walk through a Delaunay triangulation of a random
point set.

Remark: For bookkeeping reasons, EIKMESH does not support point removal if the
Delaunay-Tree or the Delaunay-Hierarchy is used.

11

3.2 The Delaunay triangulation

The Delaunay triangulation (DT) is one of the most important structures in computa-
tional geometry and the bases for a whole set of algorithms that generate unstructured
meshes such as [13, 15, 16, 2, 14, 3, 4]. The so called Delaunay criterion states that a valid
triangulation is Delaunay if and only if there is no point contained in any circumcircle
of any triangle. We will refer to DT(V) as the Delaunay triangulation of the vertex set
V . DistMesh computes the Delaunay triangulation multiple times to construct the con-
nectifity of the mesh while EikMesh avoids this repetitive computation. To be flexible,
i. e. to insert and remove points after the initial triangulation has finished we imple-
mented the incremental method of Lawson [12] also presented in [9]. The following
code constructs a Delaunay triangulation of 100 random points uniformly distributed
in a 10× 10 square:

1 // (1) generate a point set
2 Random random = new Random(0);
3 int width = 10;
4 int height = 10;
5 int numberOfPoints = 100;
6 var supply = () -> new VPoint(
7 random.nextDouble()*width,
8 random.nextDouble()*height);
9 Stream<VPoint> randomPoints = Stream.generate(supply);

10 List<VPoint> points = randomPoints
11 .limit(numberOfPoints)
12 .collect(Collectors.toList());
13

14 // (2) compute the Delaunay triangulation
15 var dT = new PDelaunayTriangulator(points);
16 var triangulation = dT.generate();

Result

3.2.1 Removing points from a DT

The next code snippet removes the first point p of the face located at q = (5.0, 5.0). We
implemented the algorithm presented in [6].

1 var mesh = triangulation.getMesh();
2 var face = triangulation.locateFace(new VPoint(5,5)).get();
3 var deletePoints = mesh.getPoints(face);
4 triangulation.remove(deletePoints.get(0));

12

Result

(a) Before the removal of p. (b) After the removal of p.

Figure 3.2: Two Delaunay triangulations. The connectivity of colored faces changes.

3.3 The constrained Delaunay triangulation

Another well-known triangulation is the so called constrained Delaunay triangulation
which is often used instead of the Delauny trianuglaiton if certain segments, for exam-
ple defined by a planar straight line graph (PSLG), have to be part of the triangulation.
We call CDT(V) a constrained Delaunay triangulation of V . The algorithm we im-
plemented was presented by Sloan in [20]: In the first step we compute the Delaunay
triangulation for the PSLG G. In the second step we restore edges of G by edge flips.
For more details we refer to [20].

3.4 The conforming Delaunay triangulation

The conforming Delaunay triangulation CCDT is constrained as well as a Delaunay tri-
angulation. That is, each constrained segments is the union of edges in the CCDT and
the triangulation is in fact a Delaunay triangulation as well.

The following code generates the CDT of the PSLG A.poly. If we replace conforming =

false by conforming = true the CCDT will be computed.

1 final InputStream inputStream = ...
2 boolean conforming = false;
3 PSLG pslg = PolyGenerator.toPSLGtoVShapes(inputStream);
4 var cdt = new PContrainedDelaunayTriangulator(
5 pslg,
6 conforming);
7 var triangulation = cdt.generate();

13

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly

Result

(a) DT (b) CDT (c) CCDT

Figure 3.3: Illustration of the Delaunay triangulation (DT), the constrained Delaunay
triangulation (CDT) and the conforming Delaunay triangulation (CCDT) of
the PSLG A.poly. Constrains are highlighted (red). The code above con-
structs the CDT.

14

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly

4 Mesh generation

4.1 The edge length function

The goal of unstructured mesh generation is to produce high quality meshes containing
as less elements as possible. To control the size of the elements, the user has to define
an edge length function. More precisely,

h : Ωin → R+

is the edge length function defined on Ωin. In the following examples you will find
different edge length functions.

4.2 Rebay’s algorithms

EIKMESH offers the implementation of two early meshing algorithm introduced by
Rebay [15]. The first one, the so called “Voronoi-Vertex point insertion method”, is
a Delaunay-refinement technique, i. e. additional Steiner vertices are inserted at the cir-
cumcenter of some Delaunay triangle. The second one, called “Voronoi-Segment point
insertion method”, is a Frontal-Delaunay algorithm. Frontal-Delaunay algorithms are
a hybridization of advancing-front and Delaunay-refinement techniques, in which a
Delaunay triangulation is used to define the topology of a mesh while new Steiner
vertices are inserted in a manner consistent with advancing-front techniques. Both algo-
rithms have a time complexity of O(n log(n)), where n is the number of vertices of the
generated triangulation. For both the user can control the element size by

h : R2 → R. (4.1)

Let tj be a triangle of a triangulation then

αj =
ρj√

3h(xj)
(4.2)

gives a ratio, where xj is the circumcenter and ρj the circumcircle radius of tk. We
multiply by

√
3 to get the circumradius of a equilateral triangle of side length h. If

max
j
αj ≤ 1, (4.3)

the triangulation is “fine enough”.

15

Given a segment-bounded PSLG G, our algorithms start by constructing the conform-
ing Delaunay triangulation of G. In the second step we split all boundary edges e =
{v1, v2} at their midpoint xe until

‖v1 − v2‖ ≤ h(xe). (4.4)

Note that Rebay uses the Boywer-Watson algorithm, that is, triangles are removed and
the emerging convex polygon is triangulated. EIKMESH applies the flipping technique
described by Lawson in [12] instead. After computing the CCDT and the splitting of
boundary edges, additional Steiner vertices are inserted. In each iteration a new Steiner
vertex v is inserted according to h and the CDT Tk+1 = CDT(p(Tk)∪{v}) is established
on the basis of Tk. While refining, the properties of the CDT is retained, i. e. Tk might
violate the Delaunay criterion but is a CDT. We achieve this by avoiding flips of edges
belonging to G. After vertex insertion, triangles outside the domain are removed.

4.2.1 Voronoi-Vertex point insertion method

In each iteration k, v is the circumcenter of the triangle tj ∈ Tk−1 with the largest cir-
cumcenter radius ρj . Note that if Tk−1 is a Delaunay triangulation, v is in fact a vertex
of the Voronoi diagram of the current vertex set. It might be the case that v lies outside
of the segment-bound of G. In this case we ignore the vertex, i. e. it will not be inserted.

The following code generates a mesh using h(xj) = 0.05:
1 PSLG pslg = ...
2 double h0 = 0.05;
3 var vviMethod = new PVoronoiVertexInsertion(
4 pslg,
5 p -> h0);
6 var triangulation vviMethod.generate();

Result

(a) h(xj) = 0.05 (b) h(xj) = 0.02 (c) h(xj) = 0.01

Figure 4.1: Triangulation using the Voronoi-Vertex point insertion method of the PSLG
defined by A.poly. The color code indicate triangle qualities.

16

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly

4.2.2 Voronoi-Segment point insertion method

In each iteration k, v lies on the segment of the Voronoi diagram of p(Tk−1). Additional
each inserted vertex is an attempt to generate a new triangle tj such that

ρj√
3h(xj)

= αj ≤ 1. (4.5)

is satisfied, which is not always possible. At the beginning all external triangles are ac-
cepted. A triangle is active if it is not accepted and there is a neighboring accepted triangle.
The triangle which will be considered for refinement is the active triangle tj with the
largest circumradius ρj , i. e. for which

max
j
ρj (4.6)

holds. Like before, v might be outside of the segment-bound of G. In this case we ig-
nore the vertex, i. e. it will not be inserted. For more information we refer to [15].

The following code generates a mesh using h(xj) = 0.05:
1 PSLG pslg = ...
2 double h0 = 0.05;
3 var vviMethod = new PVoronoiSegmentInsertion(
4 pslg,
5 p -> h0);
6 var triangulation vviMethod.generate();

Result

(a) h(xj) = 0.05 (b) h(xj) = 0.02 (c) h(xj) = 0.01

Figure 4.2: Triangulation using the Voronoi-Segment point insertion method of the
PSLG defined by A.poly. The color code indicate triangle qualities.

Remark: Since both algorithm ignore Steiner vertices outside of the segment-bound of
G, the split of segments which are part of the segment-bound is essential. It is easy to
construct a PSLG G for which the circumcenter of each triangle of the CCDT of G is not
contained in the segment-bound!

17

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly

4.3 Ruppert’s algorithm

Ruppert’s algorithm [16] for two-dimensional quality mesh generation is probably the
first theoretically guaranteed meshing algorithm to be truly satisfactory in practice. The
algorithm allows the density of triangles to vary quickly over short distance. It is quite
similar to Rebay’s Voronoi-Vertex point insertion method, but avoids Steiner vertices
outside the segment-bound. Furthermore, it is also a Delaunay-refinement method.
For an excellent and extensive description we refer to [19].

Remark: The termination of Ruppert’s algorithm is only guaranteed for θmin ≤ 20.7◦

and if there is no angle smaller 60◦ inG. The extension in [19] resolves the issue of small
input angles in G but at this moment EIKMESH only supports the algorithm proposed
by Ruppert. A C-implementation is accessible via Triangle. See [18, 17, 19].

The following code generates a mesh using h(xj) = 0.05 and θ = 20◦:

1 PSLG pslg = ...
2 double h0 = 0.02;
3 double theta = 20.0;
4 var ruppert = new PRuppertsTriangulator(
5 pslg,
6 p -> h0,
7 theta);
8 var triangulation = ruppert.generate();

Result

(a) θ = 20◦, h(xj) =∞ (b) θ = 30◦, h(xj) =∞ (c) θ = 20◦, h(xj) = 0.02

Figure 4.3: Accomplished triangulation using Ruppert’s algorithm of the PSLG defined
by A.poly. The color code indicate triangle qualities. For θ > 32◦ Ruppert’s
algorithm does not terminate for this example.

18

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/A.poly

(a) θ = 25◦, h(xj) =∞

(b) θ = 30◦, h(xj) =∞

Figure 4.4: Accomplished triangulation using Ruppert’s algorithm of the PSLG of
Greenland. The color code indicate triangle qualities.

19

5 EikMesh

EikMesh starts by constructing an initial triangulation T0 which satisfies the size con-
strains defined by the edge length function h. Based on the initial triangulation a
smoothing process improves the mesh quality by moving vertices iteratively. The algo-
rithm is an adaptation of the DistMesh algorithm introduced in [14]. In this document
we left out an extensive explanation of DistMesh and refer instead to the publication of
Persson and Strang. EikMesh is also described in [21].

5.1 Initial triangulation

5.1.1 Bisection according to a space filling curve

To avoid the creation of vertices, we replaced the rejection mechanism of DistMesh by
another algorithm. We construct an initial high-quality mesh by applying the hierarchi-
cal mesh refinement strategy described in [1]. The starting point is a square with side
length s containing Ωin. The square is spit into two triangles as depicted in

Figure 5.1: The initial mesh for the first 5 refinement steps and the corresponding space-
filling Sierpinski curve.

Edge e of length le are split until
le ≤ h(e). (5.1)

hods. Afterwards, all triangles outside of Ωin are removed. By using this bisection
strategy the triangle quality defined in [14] is

2
√

2− 2 ≈ 0.83. (5.2)

for each triangle.

20

5.2 The smoothing algorithm

5.2.1 Edge flips

The MatLab code of DistMesh presented [14] is short and simple due to the use of the
build-in Delaunay triangulator. By computing the Delaunay triangulation, DistMesh
avoids code which changes the connectivity, i. e. the set of edges E. Furthermore, even
if the final result of DistMesh depends on the initial vertex set V0, it can handle any
initial vertex set especially sets for which T0 = DT(V0) contains a lot poor quality
triangles. However, this comes at a cost since the time complexity of computing the
Delaunay trioangulation of n point is O(n log(n)). EikMesh avoids the computation
of the Delaunay triangulation whenever possible. Let Ti be some valid triangulation
at iteration i then the following flip algorithm suffices to construct a valid Delaunay
triangulation Ti+1 based on Ti:

Algorithm 1: edge-flipping [12]

while ∃e ∈ Ei : ¬isDelaunay(e) do
flip(e);

end

In worst case this algorithm requires O(n2) time. However, if only a few changes to
the connectivity are necessary, which is the case if the overall triangle quality is above
some threshold, the complexity of Algorithm 1 is linear. Additionally, exploiting mas-
sive parallelism for Algorithm 1 is straightforward. Flipping edges for each iteration
removes all jumps in the triangle quality and improves the convergence towards an
equilibrium [21].

5.2.2 Long boundary edges

EikMesh changes the way in which boundary elements (vertices, edges, triangles) are
treated. Why are these elements special with respect to the DistMesh algorithm? First
of all, boundary edges will never be flipped, i. e. successive Delaunay triangulations
computed by DistMesh will contain the same boundary edge. The only way to get rid
of a boundary edge is when its triangle is removed, which is only the case if its triangle
centroid lies outside the domain. Additionally, the movement of boundary vertices is
more restricted (by external forces and fix points). For the remaining section, let vo be
the opposite vertex of the boundary edge eb and tb the boundary triangle of eb.

Let us assume that eb is the longest edge of tb and all incident edges of vo have reached
almost their desired length. In this situation

F (vo) ≈ 0 (5.3)

holds. See Fig. 5.2a. More general, there is not necessarily a force acting towards ∂Ωin.
We observed that those situations appear frequently during a DistMesh run, which

21

leads to vo moving very slowly towards the domain boundary while the quality τ (tb)
drops. This can lead to low quality triangles in the final mesh also observed by Jonas
Koko in [11] and worsens the convergence rate of DistMesh.

F (vo)

vo

eb

Ωin

Ωout

(a) Before edge deletion

F (vo)

vo

Ωin

Ωout

(b) After edge deletion

Figure 5.2: Illustration of a long boundary edge and its treatment. Left: The force F (v0)
acting on the opposite vertex of a long boundary edge eb (blue) at the bound-
ary domain ∂Ωin (red) tends to be very small. Therefore it takes many iter-
ations until the bad quality triangle tb (gray) will be removed. Right: Inside
projection of vo (blue) onto ∂Ωin (red) after the deletion of the boundary tri-
angle tb.

One solution we introduced in [21] is to remove tb (and eb) and project vo towards the
domain boundary with respect to ∇d. More precisely, EikMesh removes low quality
triangles at the boundary and projects all boundary points towards ∂Ωin. This is differ-
ent from DistMesh which does only project points outside of Ωin. To do so one has to
identify boundary vertices to be at the boundary of the triangulation T which is trivial
using the DCEL data structure. By adjusting boundary vertices during the mesh gener-
ation, make sure that if a vertex is at the boundary mesh.getEdge(v) returns always an
edge which is at the boundary in O(1).

22

5.3 Examples

5.3.1 Uniform ring

The following code snippet generates a mesh using the standard EikMesh algorithm
for a simple curved geometry. The geometry is defined by the distance function

dring(x) = abs(‖x− c‖ − 0.5)− 0.4

with c = (1, 1) to be the center of the ring. The inner radius is 0.2 and the outer radius
1.0. The edge length is h(x) = 0.1 and the bound has to contain Ωin. The result is
illustrated in Fig. 5.3.

1 VRectangle bound = new VRectangle(-0.1, -0.1, 2.2, 2.2);
2 IDistanceFunction d_r = IDistanceFunction.createRing(1, 1, 0.2, 1.0);
3 double h0 = 0.1;
4 PEikMesh meshImprover = new PEikMesh(d_r,h0,bound);
5 meshImprover.generate();

5.3.2 Disc subtracted by a rectangle

Distance functions can be combined. The result is illustrated in Fig. 5.3.

1 VRectangle bound = ...
2 VRectangle rect = new VRectangle(0.5, 0.5, 1, 1);
3 IDistanceFunction d_c = IDistanceFunction.createDisc(0.5, 0.5, 0.5);
4 IDistanceFunction d_r = IDistanceFunction.create(rect);
5 IDistanceFunction d = IDistanceFunction.substract(d_c, d_r);
6 double edgeLength = 0.03;
7 var meshImprover = new PEikMesh(
8 d,
9 p -> edgeLength + 0.5 * Math.abs(d.apply(p)),

10 edgeLength,
11 bound,
12 Arrays.asList(rect));

Line 1 defines a bounding box containing Ωin. The second line defines the hole and is
transformed into a distance function drec in line 4. The disc is defined by the distance
function ddisc constructed in line 3. By subtracting drect from ddisc we construct

d(x) = dcomb(x) = max{ddisc,−drec}

Note that even if the geometry is defined by dcomb, the rectangle rect is an argument of
EikMesh. This is optional and automatically inserts fix points at the corners of the rect-
angle which improves the mesh quality. Furthermore, in line 9 we use a non-constant
edge length function

h(x) = hmin + 0.3 · abs(dcomb(x)).

23

5.3.3 Combining distance functions

We can also construct geometries by the union and intersection of distance functions.
For example, Fig. 5.3j illustrate the result of the following code.

1 // inner rectangle
2 VRectangle rect = new VRectangle(-0.5, -0.5, 1, 1);
3

4 // outer rectangle
5 VRectangle boundary = new VRectangle(-2,-0.7,4,1.4);
6

7 // construction of the distance function, define the 2 discs
8 IDistanceFunction d1_c = IDistanceFunction.createDisc(-0.5, 0, 0.5);
9 IDistanceFunction d2_c = IDistanceFunction.createDisc(0.5, 0, 0.5);

10

11 // define the two rectangles
12 IDistanceFunction d_r = IDistanceFunction.create(rect);
13 IDistanceFunction d_b = IDistanceFunction.create(boundary);
14

15 // combine distance functions
16 IDistanceFunction d_unionTmp = IDistanceFunction.union(d1_c, d_r)
17 IDistanceFunction d_union = IDistanceFunction.union(d_unionTmp, d2_c);
18 IDistanceFunction d = IDistanceFunction.substract(d_b,d_union);
19

20 // h_min
21 double edgeLength = 0.03;
22

23 var meshImprover = new PEikMesh(
24 d,
25 p -> edgeLength + 0.5 * Math.abs(d.apply(p)),
26 edgeLength,
27 GeometryUtils.boundRelative(boundary.getPath()),
28 Arrays.asList(rect));
29

30 // generate the mesh
31 var triangulation = meshImprover.generate();

We define two circles and a rectangle and compute the union dunion of these three dis-
tance functions in line 7. Finally we subtract dunion from a larger rectangle.

Remark: The definition of the distance function d, the edge length function h, the min-
imum edge length hmin and the bounding box have to be carefully defined by the user.
For example, if hmin is too large EikMesh might fail to construct a mesh.

5.3.4 Meshing a PSLG

The following code sniped produces the mesh illustrated in Fig. 5.4 by constructing a
distance functions based on the given PSLG:

1 PSLG pslg = ...
2 PEikMesh meshImprover = new PEikMesh(
3 pslg.getSegmentBound(), 0.02, pslg.getHoles());

24

(a) h(x) = 0.3. (b) h(x) = 0.1. (c) h(x) = 0.05.

(d) h(x) = 0.1. (e) h(x) = 0.03. (f) h(x) = 0.01.

(g) h(x) = 0.1. (h) h(x) = 0.03. (i) h(x) = 0.01.

(j) h(x) = 0.03.

Figure 5.3: Meshes generated by EikMesh using different distance functions d and edge
length functions h.

25

(a) h(x) = 0.05. (b) h(x) = 0.02. (c) h(x) = 0.01.

Figure 5.4: Meshes generated by EikMesh using different edge length functions h.

(a) DT(V) of 1000 uniformly ran-
dom distributed points.

(b) The resulting triangulation
generated by EikMesh.

Figure 5.5: Meshes generated by EikMesh using a given Delaunay triangulation as in-
put. The boundary of the mesh does not change.

5.3.5 Random Delaunay triangulation

The following code uses a Delaunay triangulation of 1000 random points as the initial
triangulation, also depicted in Fig. 5.5.

1 var dt = ... // the Delaunay triangulation
2 var eikMesh = new PEikMesh(
3 p -> 1.0 + Math.abs(bound.distance(p)),
4 dt.getTriangulation());
5 var triangulation = eikMesh.generate();

The quality of the resulting triangulation is approximately 0.96. This example shows
that EIKMESH can be used to improve even a very low quality initial triangulation.

26

5.3.6 Urban environment

In the last example we mesh an urban environment (600 × 250[m2]) which is in fact a
geometry used for pedestrian simulation. The result is depicted in Fig. 5.6.

1 // (1) read the PSLG from a file / an input stream
2 final InputStream inputStream = MeshExamples.class.getResourceAsStream("/poly/

kaiserslautern.poly");
3 PSLG pslg = PolyGenerator.toPSLGtoVShapes(inputStream);
4

5 // (2) construct a distance function d out of the PSLG
6 Collection<VPolygon> holes = pslg.getHoles();
7 VPolygon segmentBound = pslg.getSegmentBound();
8 IDistanceFunction d = IDistanceFunction.create(segmentBound, holes);
9

10 // (3) use EikMesh to construct the mesh
11 double h0 = 5.0;
12 var meshImprover = new PEikMesh(
13 d,
14 p -> h0 + 0.3 * Math.abs(d.apply(p)),
15 h0,
16 new VRectangle(segmentBound.getBounds2D()),
17 pslg.getHoles(),
18);
19 meshImprover.generate();

Remark: Since the distance function d is complicated the mesh generation is quite slow
because d has to be evaluated for each iteration of the smoothing process for almost
any mesh element. To reduce the complexity of the evaluation one can construct a
background mesh using, for example, Ruppert’s algorithm and approximate d via the
interpolation on the background mesh.

Figure 5.6: A high quality mesh of an urban environment.

27

Bibliography

[1] Jörn Behrens and Michael Bader. Efficiency considerations in triangular adaptive
mesh refinement. Philosophical Transactions of the Royal Society A, 367:4577–4589,
October 2009. Theme Issue ’Mesh generation and mesh adaptation for large-scale
Earth-system modelling’.

[2] Siu-Wing Cheng and Tamal K. Dey. Quality meshing with weighted delaunay
refinement. SIAM Journal on Computing, 33(1):69–93, 2003.

[3] Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical delaunay mesh-
ing algorithm for alarge class of domains*. In Michael L. Brewer and David Mar-
cum, editors, Proceedings of the 16th International Meshing Roundtable, pages 477–
494, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[4] Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement for
piecewise smooth complexes. Discrete & Computational Geometry, 43(1):121–166,
Jan 2010.

[5] Olivier Devillers. The delaunay hierarchy. International Journal of Foundations of
Computer Science, 13(02):163–180, 2002.

[6] Olivier Devillers. On deletion in delaunay triangulations. International Journal of
Computational Geometry & Applications, 12(03):193–205, 2002.

[7] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation.
In 17th Annual ACM Symposium on Computational Geometry (SCG), pages 106–114,
Boston, United States, June 2001.

[8] Luc Devroye, Christophe Lemaire, and Jean-Michel Moreau. Expected time anal-
ysis for delaunay point location. Computational Geometry, 29(2):61 – 89, 2004.

[9] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regu-
lar triangulations. Algorithmica, 15(3):223–241, Mar 1996.

[10] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental
construction of delaunay and voronoi diagrams. Algorithmica, 7(1):381–413, Jun
1992.

[11] Jonas Koko. A matlab mesh generator for the two-dimensional finite element
method. Applied Mathematics and Computation, 250:650 – 664, 2015.

28

[12] C.L. Lawson. Software for c1 surface interpolation. In John R. Rice, editor, Mathe-
matical Software, pages 161 – 194. Academic Press, 1977.

[13] Rainald Löhner and Paresh Parikh. Generation of three-dimensional unstructured
grids by the advancing-front method. International Journal for Numerical Methods in
Fluids, 8(10):1135–1149, 1988.

[14] Per-Olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM
Review, 46(2):329–345, 2004.

[15] S. Rebay. Efficient unstructured mesh generation by means of delaunay triangu-
lation and bowyer-watson algorithm. Journal of Computational Physics, 106(1):125–
138, 1993.

[16] Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh gener-
ation. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’93, pages 83–92, Philadelphia, PA, USA, 1993. Society for Industrial
and Applied Mathematics.

[17] Johnathan Richard Shewchuk. Robust adaptive floating-point geometric predi-
cates. In Proceedings of the Twelfth Annual Symposium on Computational Geometry,
SCG ’96, pages 141–150, New York, NY, USA, 1996. ACM.

[18] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied
Computational Geometry Towards Geometric Engineering, pages 203–222, Berlin, Hei-
delberg, 1996. Springer Berlin Heidelberg.

[19] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh
generation. Computational Geometry, 22(1):21 – 74, 2002. 16th ACM Symposium on
Computational Geometry.

[20] S. W. Sloan. A fast algorithm for generating constrained delaunay triangulations.
Computers & Structures, 47(3):441–450, 1993.

[21] Benedikt Zönnchen and Gerta Köster. A parallel generator for sparse unstructured
meshes to solve the eikonal equation. Journal of Computational Science, 2018.

29

	Introduction
	Domain description
	Signed distance functions
	Planar straight line graphs

	Mesh data structure
	Streams, monads and lambdas
	Implementation
	Pointer- and array-based implementation
	Properties
	Implicit assumptions

	Working with meshes
	Building a mesh
	Transforming a PSLG into a mesh
	Accessing mesh elements
	Containers
	Visualization

	Preliminary algorithms
	The point location problem
	The Delaunay triangulation
	Removing points from a DT

	The constrained Delaunay triangulation
	The conforming Delaunay triangulation

	Mesh generation
	The edge length function
	Rebay's algorithms
	Voronoi-Vertex point insertion method
	Voronoi-Segment point insertion method

	Ruppert's algorithm

	EikMesh
	Initial triangulation
	Bisection according to a space filling curve

	The smoothing algorithm
	Edge flips
	Long boundary edges

	Examples
	Uniform ring
	Disc subtracted by a rectangle
	Combining distance functions
	Meshing a PSLG
	Random Delaunay triangulation
	Urban environment

